Self-similar solutions preventing finite time blow-up for reaction-diffusion equations with singular potential
نویسندگان
چکیده
We prove existence and uniqueness of a global in time self-similar solution growing up as t→∞ for the following reaction-diffusion equation with singular potentialut=Δum+|x|σup, posed dimension N≥2, m>1, σ∈(−2,0) 11 p>1, showing an interesting effect induced by potential |x|σ. This result is also applied to equations general potentials V(x) prevent via comparison.
منابع مشابه
From blow-up boundary solutions to equations with singular nonlinearities
In this survey we report on some recent results related to various singular phenomena arising in the study of some classes of nonlinear elliptic equations. We establish qualitative results on the existence, nonexistence or the uniqueness of solutions and we focus on the following types of problems: (i) blow-up boundary solutions of logistic equations; (ii) Lane-Emden-Fowler equations with singu...
متن کاملFinite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملGlobal existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term
In this work, we study the blow-up and global solutions for a quasilinear reaction–diffusion equation with a gradient term and nonlinear boundary condition: (g(u)) t = ∆u + f (x, u, |∇u| 2 , t) in D × (0, T), ∂u ∂n = r(u) on ∂D × (0, T), u(x, 0) = u 0 (x) > 0 in D, where D ⊂ R N is a bounded domain with smooth boundary ∂D. Through constructing suitable auxiliary functions and using ma...
متن کاملSelf-similar blow-up for a diffusion–attraction problem
In this paper we consider a system of equations that describes a class of mass-conserving aggregation phenomena, including gravitational collapse and bacterial chemotaxis. In spatial dimensions strictly larger than two, and under the assumptions of radial symmetry, it is known that this system has at least two stable mechanisms of singularity formation (see, e.g., Brenner M P et al 1999 Nonline...
متن کاملBlow - up Solutions for Gkdv Equations with K Blow
In this paper we consider the slightly L-supercritical gKdV equations ∂tu + (uxx + u|u|)x = 0, with the nonlinearity 5 < p < 5 + ε and 0 < ε ≪ 1 . In the previous paper [10] we know that there exists an stable selfsimilar blow-up dynamics for slightly L-supercritical gKdV equations. Such solution can be viewed as solutions with single blow-up point. In this paper we will prove the existence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2023
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2023.02.026